Integrated Duty Cycle Control for Multiple Renewable Energy Sources in a Grid Connected System

نویسندگان

چکیده

Due to their abundance, affordability, and clean energy production, Renewable Energy Sources (RESs) have emerged as crucial sources of electricity production. As a result, considerable effort has been made integrate renewable into the grid help it meet demands. One challenges is Maximum Power Extraction (MPE), where maximum power needs be extracted from each RES. The cost implementation rises linearly with number RESs if MPE arrangements are being for RES individually. Additionally, through multiple systems gets more challenging, especially when several PhotoVoltaic (PV) strings connected PV string receive non-uniform irradiance. This paper proposes an integrated control system multi-RES grid-connected system. proposed solution uses single microcontroller maximize all overcome growing problem. Moreover, we propose improved Multi-Dimensional Cuckoo (MDC) algorithm tackle irradiation problem multi-string PV, in contrast prior works sources. technique first put up against individual system, then Jaya that documented literature typical one-dimensional MPE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Management in a Utility Connected Micro-Grid with Multiple Renewable Energy Sources

As an efficient alternative to fossil fuels, renewable energy sources have attained great attention due to their sustainable, cost-effective, and environmentally friendly characteristic. However, as a deficiency, renewable energy sources have low reliability because of their non-deterministic and stochastic generation pattern. The use of hybrid renewable generation systems along with the storag...

متن کامل

Hardware in Loop of a Generalized Predictive Controller for a Micro Grid DC System of Renewable Energy Sources

In this paper, a hardware in the loop simulation (HIL) is presented. This application is purposed as the first step before a real implementation of a Generalized Predictive Control (GPC) on a micro-grid system located at the Military University Campus in Cajica, Colombia. The designed GPC, looks for keep the battery bank State of Charge (SOC) over the 70% and under the 90%, what ensures the bes...

متن کامل

A Novel Control Strategy for a Single-phase Grid-connected Power Injection System

In this paper, a novel and simple control strategy, based on state feedback method is suggested to control the power injection system (PIS). The considered PIS is composed of, a DC voltage source, a voltage source inverter (VSI) and a L-C-L filter. The DC source includes the battery source with boosted voltage. The battery can be charged with photovoltaic cells. Since, the grid voltage acts as ...

متن کامل

A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid

The objective of this study was to create a tool that will enable renewable energy microgrid (REμG) facility users to make informed decisions on the utilization of electrical power output from a building integrated REμG connected to a smart grid. A decision support tool for renewable energy microgrids (DSTREM) capable of predicting photovoltaic array and wind turbine power outputs was developed...

متن کامل

Decentralized Control Strategy for Optimal Energy Management in Grid-Connected and Islanded DC Microgrids

This paper proposes a decentralized control technique to minimize the total operation cost of a DC microgrid in both grid-connected and islanded modes. In this study, a cost-based droop control scheme based on the hourly bids of all participant distributed generators (DGs) and the hourly energy price of the utility is presented. An economic power sharing technique among various types of DG unit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE open journal of power electronics

سال: 2023

ISSN: ['2644-1314']

DOI: https://doi.org/10.1109/ojpel.2023.3270663